OCR MEI M2 2012 January — Question 3

Exam BoardOCR MEI
ModuleM2 (Mechanics 2)
Year2012
SessionJanuary
TopicMoments

3 A thin rigid non-uniform beam AB of length 6 m has weight 800 N . Its centre of mass, G , is 2 m from B .
Initially the beam is horizontal and in equilibrium when supported by a small round peg at \(\mathrm { C } , 1 \mathrm {~m}\) from A , and a light vertical wire at B . This situation is shown in Fig. 3.1 where the lengths are in metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a6297924-579e-4340-8fe6-2b43bd1a8698-4_259_460_438_431} \captionsetup{labelformat=empty} \caption{Fig. 3.1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a6297924-579e-4340-8fe6-2b43bd1a8698-4_257_586_447_1046} \captionsetup{labelformat=empty} \caption{Fig. 3.2}
\end{figure}
  1. Calculate the tension in the wire and the normal reaction of the peg on the beam. The beam is now held horizontal and in equilibrium with the wire at \(70 ^ { \circ }\) to the horizontal, as shown in Fig. 3.2. The peg at C is rough and still supports the beam 1 m from A. The beam is on the point of slipping.
  2. Calculate the new tension in the wire. Calculate also the coefficient of friction between the peg and the beam. The beam is now held in equilibrium at \(30 ^ { \circ }\) to the vertical with the wire at \(\theta ^ { \circ }\) to the beam, as shown in Fig. 3.3. A new small smooth peg now makes contact with the beam at C, still 1 m from A. The tension in the wire is now \(T \mathrm {~N}\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a6297924-579e-4340-8fe6-2b43bd1a8698-4_456_353_1484_861} \captionsetup{labelformat=empty} \caption{Fig. 3.3}
    \end{figure}
  3. By taking moments about C , resolving in a suitable direction and obtaining two equations in terms of \(\theta\) and \(T\), or otherwise, calculate \(\theta\) and \(T\).