2 A car of mass 1200 kg travels along a road for two minutes during which time it rises a vertical distance of 60 m and does \(1.8 \times 10 ^ { 6 } \mathrm {~J}\) of work against the resistance to its motion. The speeds of the car at the start and at the end of the two minutes are the same.
- Calculate the average power developed over the two minutes.
The car now travels along a straight level road at a steady speed of \(18 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) while developing constant power of 13.5 kW .
- Calculate the resistance to the motion of the car.
How much work is done against the resistance when the car travels 200 m ?
While travelling at \(18 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the car starts to go down a slope inclined at \(5 ^ { \circ }\) to the horizontal with the power removed and its brakes applied. The total resistance to its motion is now 1500 N .
- Use an energy method to determine how far down the slope the car travels before its speed is halved.
Suppose the car is travelling along a straight level road and developing power \(P \mathrm {~W}\) while travelling at \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) with acceleration \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\) against a resistance of \(R \mathrm {~N}\).
- Show that \(P = ( R + 1200 a ) v\) and deduce that if \(P\) and \(R\) are constant then if \(a\) is not zero it cannot be constant.