AQA M2 2011 January — Question 8

Exam BoardAQA
ModuleM2 (Mechanics 2)
Year2011
SessionJanuary
TopicDifferential equations

8 Vicky has mass 65 kg and is skydiving. She steps out of a helicopter and falls vertically. She then waits a short period of time before opening her parachute. The parachute opens at time \(t = 0\) when her speed is \(19.6 \mathrm {~ms} ^ { - 1 }\), and she then experiences an air resistance force of magnitude \(260 v\) newtons, where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is her speed at time \(t\) seconds.
  1. When \(t > 0\) :
    1. show that the resultant downward force acting on Vicky is 65(9.8-4v) newtons
    2. show that \(\frac { \mathrm { d } v } { \mathrm {~d} t } = - 4 ( v - 2.45 )\).
  2. By showing that \(\int \frac { 1 } { v - 2.45 } \mathrm {~d} v = - \int 4 \mathrm {~d} t\), find \(v\) in terms of \(t\).
    \includegraphics[max width=\textwidth, alt={}]{9d039ec3-fd0a-40ae-9afe-7627439081df-21_2349_1707_221_153}
    DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED