4 A uniform rectangular lamina \(A B C D\) has a mass of 5 kg . The side \(A B\) has length 60 cm and the side \(B C\) has length 30 cm . The points \(P , Q , R\) and \(S\) are the mid-points of the sides, as shown in the diagram below.
A uniform triangular lamina \(S R D\), of mass 4 kg , is fixed to the rectangular lamina to form a shop sign. The centre of mass of the triangular lamina \(S R D\) is 10 cm from the side \(A D\) and 5 cm from the side \(D C\).
\includegraphics[max width=\textwidth, alt={}, center]{9d039ec3-fd0a-40ae-9afe-7627439081df-08_613_1086_660_518}
- Find the distance of the centre of mass of the shop sign from \(A D\).
- Find the distance of the centre of mass of the shop sign from \(A B\).
- The shop sign is freely suspended from \(P\).
Find the angle between \(A B\) and the horizontal when the shop sign is in equilibrium.
- To ensure that the side \(A B\) is horizontal when the shop sign is freely suspended from point \(P\), a particle of mass \(m \mathrm {~kg}\) is attached to the shop sign at point \(B\).
Calculate \(m\).
- Explain how you have used the fact that the rectangular lamina \(A B C D\) is uniform in your solution to this question.
(1 mark)
\includegraphics[max width=\textwidth, alt={}]{9d039ec3-fd0a-40ae-9afe-7627439081df-10_2486_1714_221_153}
\includegraphics[max width=\textwidth, alt={}]{9d039ec3-fd0a-40ae-9afe-7627439081df-11_2486_1714_221_153}