AQA S3 2016 June — Question 4

Exam BoardAQA
ModuleS3 (Statistics 3)
Year2016
SessionJune
TopicLinear combinations of normal random variables
TypeMultiple stage process probability

4 Ben is a fencing contractor who is often required to repair a garden fence by replacing a broken post between fence panels, as illustrated.
\includegraphics[max width=\textwidth, alt={}, center]{f536a1ad-333a-47ec-a076-ec8497c1d8fc-10_364_789_388_694} The tasks involved are as follows.
\(U :\) detach the two fence panels from the broken post
\(V\) : remove the broken post
\(W\) : insert a new post
\(X\) : attach the two fence panels to the new post
The mean and the standard deviation of the time, in minutes, for each of these tasks are shown in the table.
TaskMean
Standard
deviation
\(\boldsymbol { U }\)155
\(\boldsymbol { V }\)4015
\(\boldsymbol { W }\)7520
\(\boldsymbol { X }\)2010
The random variables \(U , V , W\) and \(X\) are pairwise independent, except for \(V\) and \(W\) for which \(\rho _ { V W } = 0.25\).
  1. Determine values for the mean and the variance of:
    1. \(R = U + X\);
    2. \(F = V + W\);
    3. \(T = R + F\);
    4. \(D = W - V\).
  2. Assuming that each of \(R , F , T\) and \(D\) is approximately normally distributed, determine the probability that:
    1. the total time taken by Ben to repair a garden fence is less than 3 hours;
    2. the time taken by Ben to insert a new post is at least 1 hour more than the time taken by him to remove the broken post.