AQA S2 2015 June — Question 6

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2015
SessionJune
TopicCumulative distribution functions
TypeCDF to PDF derivation

6 The continuous random variable \(X\) has the cumulative distribution function $$\mathrm { F } ( x ) = \begin{cases} 0 & x < 0
\frac { 1 } { 2 } x - \frac { 1 } { 16 } x ^ { 2 } & 0 \leqslant x \leqslant 4
1 & x > 4 \end{cases}$$
  1. Find the probability that \(X\) lies between 0.4 and 0.8 .
  2. Show that the probability density function, \(\mathrm { f } ( x )\), of \(X\) is given by $$f ( x ) = \begin{cases} \frac { 1 } { 2 } - \frac { 1 } { 8 } x & 0 \leqslant x \leqslant 4
    0 & \text { otherwise } \end{cases}$$
    1. Find the value of \(\mathrm { E } ( X )\).
    2. Show that \(\operatorname { Var } ( X ) = \frac { 8 } { 9 }\).
  3. The continuous random variable \(Y\) is defined by $$Y = 3 X - 2$$ Find the values of \(\mathrm { E } ( Y )\) and \(\operatorname { Var } ( Y )\).