6 The continuous random variable \(X\) has the cumulative distribution function
$$\mathrm { F } ( x ) = \begin{cases} 0 & x < 0
\frac { 1 } { 2 } x - \frac { 1 } { 16 } x ^ { 2 } & 0 \leqslant x \leqslant 4
1 & x > 4 \end{cases}$$
- Find the probability that \(X\) lies between 0.4 and 0.8 .
- Show that the probability density function, \(\mathrm { f } ( x )\), of \(X\) is given by
$$f ( x ) = \begin{cases} \frac { 1 } { 2 } - \frac { 1 } { 8 } x & 0 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ - Find the value of \(\mathrm { E } ( X )\).
- Show that \(\operatorname { Var } ( X ) = \frac { 8 } { 9 }\).
- The continuous random variable \(Y\) is defined by
$$Y = 3 X - 2$$
Find the values of \(\mathrm { E } ( Y )\) and \(\operatorname { Var } ( Y )\).