8 The continuous random variable \(X\) has probability density function given by
$$\mathrm { f } ( x ) = \left\{ \begin{array} { c c }
\frac { 1 } { 2 } \left( x ^ { 2 } + 1 \right) & 0 \leqslant x \leqslant 1
( x - 2 ) ^ { 2 } & 1 \leqslant x \leqslant 2
0 & \text { otherwise }
\end{array} \right.$$
- Sketch the graph of f.
- Calculate \(\mathrm { P } ( X \leqslant 1 )\).
- Show that \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { 4 } { 5 }\).
- Given that \(\mathrm { E } ( X ) = \frac { 19 } { 24 }\) and that \(\operatorname { Var } ( X ) = \frac { 499 } { k }\), find the numerical value of \(k\).
- Find \(\mathrm { E } \left( 5 X ^ { 2 } + 24 X - 3 \right)\).
- Find \(\operatorname { Var } ( 12 X - 5 )\).