AQA S1 2006 January — Question 4

Exam BoardAQA
ModuleS1 (Statistics 1)
Year2006
SessionJanuary
TopicCentral limit theorem

4 The time, \(x\) seconds, spent by each of a random sample of 100 customers at an automatic teller machine (ATM) is recorded. The times are summarised in the table.
Time (seconds)Number of customers
\(20 < x \leqslant 30\)2
\(30 < x \leqslant 40\)7
\(40 < x \leqslant 60\)18
\(60 < x \leqslant 80\)27
\(80 < x \leqslant 100\)23
\(100 < x \leqslant 120\)13
\(120 < x \leqslant 150\)7
\(150 < x \leqslant 180\)3
Total100
  1. Calculate estimates for the mean and standard deviation of the time spent at the ATM by a customer.
  2. The mean time spent at the ATM by a random sample of \(\mathbf { 3 6 }\) customers is denoted by \(\bar { Y }\).
    1. State why the distribution of \(\bar { Y }\) is approximately normal.
    2. Write down estimated values for the mean and standard error of \(\bar { Y }\).
    3. Hence estimate the probability that \(\bar { Y }\) is less than \(1 \frac { 1 } { 2 }\) minutes.