Edexcel C4 — Question 3

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
TopicArea Under & Between Curves

3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3056ad22-f87b-46c3-86cf-d46939927465-04_560_1059_146_406} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \ln ( 2 + \cos x ) , 0 \leq x \leq \pi\).
  1. Complete the table below for points on the curve, giving the \(y\) values to 4 decimal places.
  2. Giving your answers to 3 decimal places, find estimates for the area of the region bounded by the curve and the coordinate axes using the trapezium rule with
    1. 1 strip,
    2. 2 strips,
    3. 4 strips.
  3. Making your reasoning clear, suggest a value to 2 decimal places for the actual area of the region bounded by the curve and the coordinate axes.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)1.09860
    1. continued
    \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{3056ad22-f87b-46c3-86cf-d46939927465-06_563_983_146_379} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows the curve with parametric equations $$x = \tan \theta , \quad y = \cos ^ { 2 } \theta , \quad - \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }$$ The shaded region bounded by the curve, the \(x\)-axis and the lines \(x = - 1\) and \(x = 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis.