Edexcel C4 (Core Mathematics 4)

Question 1
View details
  1. A curve has the equation
$$x ^ { 3 } + 2 x y - y ^ { 2 } + 24 = 0$$ Show that the normal to the curve at the point \(( 2 , - 4 )\) has the equation \(y = 3 x - 10\). (8)
Question 2
View details
2. (a) Expand \(( 4 - x ) ^ { \frac { 1 } { 2 } }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\), simplifying each coefficient.
(b) State the set of values of \(x\) for which your expansion is valid.
(c) Use your expansion with \(x = 0.01\) to find the value of \(\sqrt { 399 }\), giving your answer to 9 significant figures.
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3056ad22-f87b-46c3-86cf-d46939927465-04_560_1059_146_406} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \ln ( 2 + \cos x ) , 0 \leq x \leq \pi\).
  1. Complete the table below for points on the curve, giving the \(y\) values to 4 decimal places.
  2. Giving your answers to 3 decimal places, find estimates for the area of the region bounded by the curve and the coordinate axes using the trapezium rule with
    1. 1 strip,
    2. 2 strips,
    3. 4 strips.
  3. Making your reasoning clear, suggest a value to 2 decimal places for the actual area of the region bounded by the curve and the coordinate axes.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)1.09860
    1. continued
    \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{3056ad22-f87b-46c3-86cf-d46939927465-06_563_983_146_379} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows the curve with parametric equations $$x = \tan \theta , \quad y = \cos ^ { 2 } \theta , \quad - \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }$$ The shaded region bounded by the curve, the \(x\)-axis and the lines \(x = - 1\) and \(x = 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 4
View details
  1. Show that the volume of the solid formed is \(\frac { 1 } { 4 } \pi ( \pi + 2 )\).
  2. Find a cartesian equation for the curve.
Question 5
View details
5. Relative to a fixed origin, the points \(A , B\) and \(C\) have position vectors ( \(2 \mathbf { i } - \mathbf { j } + 6 \mathbf { k }\) ), \(( 5 \mathbf { i } - 4 \mathbf { j } )\) and \(( 7 \mathbf { i } - 6 \mathbf { j } - 4 \mathbf { k } )\) respectively.
  1. Show that \(A , B\) and \(C\) all lie on a single straight line.
  2. Write down the ratio \(A B : B C\) The point \(D\) has position vector \(( 3 \mathbf { i } + \mathbf { j } + 4 \mathbf { k } )\).
  3. Show that \(A D\) is perpendicular to \(B D\).
  4. Find the exact area of triangle \(A B D\).
    5. continued
Question 6
View details
6. (a) Use the substitution \(x = 2 \sin u\) to evaluate $$\int _ { 0 } ^ { \sqrt { 3 } } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x$$ (b) Use integration by parts to evaluate $$\int _ { 0 } ^ { \frac { \pi } { 2 } } x \cos x d x$$ 6. continued
Question 7
View details
7. When a plague of locusts attacks a wheat crop, the proportion of the crop destroyed after \(t\) hours is denoted by \(x\). In a model, it is assumed that the rate at which the crop is destroyed is proportional to \(x ( 1 - x )\). A plague of locusts is discovered in a wheat crop when one quarter of the crop has been destroyed. Given that the rate of destruction at this instant is such that if it remained constant, the crop would be completely destroyed in a further six hours,
  1. show that \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 2 } { 3 } x ( 1 - x )\),
  2. find the percentage of the crop destroyed three hours after the plague of locusts is first discovered.
    7. continued
    7. continued