Show that the equation
$$4 \sin x + \frac { 5 } { \tan x } + \frac { 2 } { \sin x } = 0$$
may be expressed in the form \(a \cos ^ { 2 } x + b \cos x + c = 0\), where \(a , b\) and \(c\) are integers to be found.
Hence solve the equation \(4 \sin x + \frac { 5 } { \tan x } + \frac { 2 } { \sin x } = 0\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).