Edexcel C4 — Question 4

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
TopicVectors 3D & Lines

4. Relative to a fixed origin \(O\), the point \(A\) has position vector \(4 \mathbf { i } + 8 \mathbf { j } - \mathbf { k }\), and the point \(B\) has position vector \(7 \mathbf { i } + 14 \mathbf { j } + 5 \mathbf { k }\).
  1. Find the vector \(\overrightarrow { A B }\).
  2. Calculate the cosine of \(\angle O A B\).
  3. Show that, for all values of \(\lambda\), the point P with position vector \(\lambda \mathbf { i } + 2 \lambda \mathbf { j } + ( 2 \lambda - 9 ) \mathbf { k }\) lies on the line through \(A\) and \(B\).
  4. Find the value of \(\lambda\) for which \(O P\) is perpendicular to \(A B\).
  5. Hence find the coordinates of the foot of the perpendicular from \(O\) to \(A B\).