The following is a table of values for \(y = \sqrt { } ( 1 + \sin x )\), where \(x\) is in radians.
\(x\)
0
0.5
1
1.5
2
\(y\)
1
1.216
\(p\)
1.413
\(q\)
Find the value of \(p\) and the value of \(q\).
(2)
Use the trapezium rule and all the values of \(y\) in the completed table to obtain an estimate of \(I\), where
$$I = \int _ { 0 } ^ { 2 } \sqrt { } ( 1 + \sin x ) \mathrm { d } x$$
(4)