AQA C4 2014 June — Question 5 3 marks

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2014
SessionJune
Marks3
TopicHarmonic Form

5
    1. Express \(3 \sin x + 4 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving your value of \(\alpha\) to the nearest \(0.1 ^ { \circ }\).
    2. Hence solve the equation \(3 \sin 2 \theta + 4 \cos 2 \theta = 5\) in the interval \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), giving your solutions to the nearest \(0.1 ^ { \circ }\).
    1. Show that the equation \(\tan 2 \theta \tan \theta = 2\) can be written as \(2 \tan ^ { 2 } \theta = 1\).
    2. Hence solve the equation \(\tan 2 \theta \tan \theta = 2\) in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\), giving your solutions to the nearest \(0.1 ^ { \circ }\).
    1. Use the Factor Theorem to show that \(2 x - 1\) is a factor of \(8 x ^ { 3 } - 4 x + 1\).
    2. Show that \(4 \cos 2 \theta \cos \theta + 1\) can be written as \(8 x ^ { 3 } - 4 x + 1\) where \(x = \cos \theta\).
    3. Given that \(\theta = 72 ^ { \circ }\) is a solution of \(4 \cos 2 \theta \cos \theta + 1 = 0\), use the results from parts (c)(i) and (c)(ii) to show that the exact value of \(\cos 72 ^ { \circ }\) is \(\frac { ( \sqrt { 5 } - 1 ) } { p }\) where \(p\) is an integer.
      [0pt] [3 marks]