AQA C4 2013 June — Question 7

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2013
SessionJune
TopicDifferential equations

7 The height of the tide in a certain harbour is \(h\) metres at time \(t\) hours. Successive high tides occur every 12 hours. The rate of change of the height of the tide can be modelled by a function of the form \(a \cos ( k t )\), where \(a\) and \(k\) are constants. The largest value of this rate of change is 1.3 metres per hour. Write down a differential equation in the variables \(h\) and \(t\). State the values of the constants \(a\) and \(k\).