AQA C4 (Core Mathematics 4) 2013 June

Question 1
View details
1
    1. Express \(\frac { 5 - 8 x } { ( 2 + x ) ( 1 - 3 x ) }\) in the form \(\frac { A } { 2 + x } + \frac { B } { 1 - 3 x }\), where \(A\) and \(B\) are integers.
      (3 marks)
    2. Hence show that \(\int _ { - 1 } ^ { 0 } \frac { 5 - 8 x } { ( 2 + x ) ( 1 - 3 x ) } \mathrm { d } x = p \ln 2\), where \(p\) is rational.
      (4 marks)
    1. Given that \(\frac { 9 - 18 x - 6 x ^ { 2 } } { 2 - 5 x - 3 x ^ { 2 } }\) can be written as \(C + \frac { 5 - 8 x } { 2 - 5 x - 3 x ^ { 2 } }\), find the value of \(C\).
      (1 mark)
    2. Hence find the exact value of the area of the region bounded by the curve \(y = \frac { 9 - 18 x - 6 x ^ { 2 } } { 2 - 5 x - 3 x ^ { 2 } }\), the \(x\)-axis and the lines \(x = - 1\) and \(x = 0\). You may assume that \(y > 0\) when \(- 1 \leqslant x \leqslant 0\).
Question 2
View details
2 The acute angles \(\alpha\) and \(\beta\) are given by \(\tan \alpha = \frac { 2 } { \sqrt { 5 } }\) and \(\tan \beta = \frac { 1 } { 2 }\).
    1. Show that \(\sin \alpha = \frac { 2 } { 3 }\), and find the exact value of \(\cos \alpha\).
    2. Hence find the exact value of \(\sin 2 \alpha\).
  1. Show that the exact value of \(\cos ( \alpha - \beta )\) can be expressed as \(\frac { 2 } { 15 } ( k + \sqrt { 5 } )\), where \(k\) is an integer.
Question 3
View details
3
  1. Find the binomial expansion of \(( 1 + 6 x ) ^ { - \frac { 1 } { 3 } }\) up to and including the term in \(x ^ { 2 }\).
    1. Find the binomial expansion of \(( 27 + 6 x ) ^ { - \frac { 1 } { 3 } }\) up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
    2. Given that \(\sqrt [ 3 ] { \frac { 2 } { 7 } } = \frac { 2 } { \sqrt [ 3 ] { 28 } }\), use your binomial expansion from part (b)(i) to obtain an approximation to \(\sqrt [ 3 ] { \frac { 2 } { 7 } }\), giving your answer to six decimal places.
      (2 marks)
Question 4
View details
4 A curve is defined by the parametric equations \(x = 8 \mathrm { e } ^ { - 2 t } - 4 , y = 2 \mathrm { e } ^ { 2 t } + 4\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. The point \(P\), where \(t = \ln 2\), lies on the curve.
    1. Find the gradient of the curve at \(P\).
    2. Find the coordinates of \(P\).
    3. The normal at \(P\) crosses the \(x\)-axis at the point \(Q\). Find the coordinates of \(Q\).
  3. Find the Cartesian equation of the curve in the form \(x y + 4 y - 4 x = k\), where \(k\) is an integer.
    (3 marks)
Question 5
View details
5 The polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 4 x ^ { 3 } - 11 x - 3\).
  1. Use the Factor Theorem to show that ( \(2 x + 3\) ) is a factor of \(\mathrm { f } ( x )\).
  2. Write \(\mathrm { f } ( x )\) in the form \(( 2 x + 3 ) \left( a x ^ { 2 } + b x + c \right)\), where \(a , b\) and \(c\) are integers.
    1. Show that the equation \(2 \cos 2 \theta \sin \theta + 9 \sin \theta + 3 = 0\) can be written as \(4 x ^ { 3 } - 11 x - 3 = 0\), where \(x = \sin \theta\).
    2. Hence find all solutions of the equation \(2 \cos 2 \theta \sin \theta + 9 \sin \theta + 3 = 0\) in the interval \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), giving your solutions to the nearest degree.
Question 6
View details
6 The points \(A , B\) and \(C\) have coordinates \(( 3 , - 2,4 ) , ( 1 , - 5,6 )\) and \(( - 4,5 , - 1 )\) respectively. The line \(l\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 3
- 2
4 \end{array} \right] + \lambda \left[ \begin{array} { r } 7
- 7
5 \end{array} \right]\).
  1. Show that the point \(C\) lies on the line \(l\).
  2. Find a vector equation of the line that passes through points \(A\) and \(B\).
  3. The point \(D\) lies on the line through \(A\) and \(B\) such that the angle \(C D A\) is a right angle. Find the coordinates of \(D\).
  4. The point \(E\) lies on the line through \(A\) and \(B\) such that the area of triangle \(A C E\) is three times the area of triangle \(A C D\). Find the coordinates of the two possible positions of \(E\).
Question 7
View details
7 The height of the tide in a certain harbour is \(h\) metres at time \(t\) hours. Successive high tides occur every 12 hours. The rate of change of the height of the tide can be modelled by a function of the form \(a \cos ( k t )\), where \(a\) and \(k\) are constants. The largest value of this rate of change is 1.3 metres per hour. Write down a differential equation in the variables \(h\) and \(t\). State the values of the constants \(a\) and \(k\).
Question 8
View details
8
  1. \(\quad\) Find \(\int t \cos \left( \frac { \pi } { 4 } t \right) \mathrm { d } t\).
  2. The platform of a theme park ride oscillates vertically. For the first 75 seconds of the ride, $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { t \cos \left( \frac { \pi } { 4 } t \right) } { 32 x }$$ where \(x\) metres is the height of the platform above the ground after time \(t\) seconds.
    At \(t = 0\), the height of the platform above the ground is 4 metres.
    Find the height of the platform after 45 seconds, giving your answer to the nearest centimetre.
    (6 marks)