AQA C4 2013 January — Question 7

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2013
SessionJanuary
TopicExponential Functions

7 A biologist is investigating the growth of a population of a species of rodent. The biologist proposes the model $$N = \frac { 500 } { 1 + 9 \mathrm { e } ^ { - \frac { t } { 8 } } }$$ for the number of rodents, \(N\), in the population \(t\) weeks after the start of the investigation. Use this model to answer the following questions.
    1. Find the size of the population at the start of the investigation.
    2. Find the size of the population 24 weeks after the start of the investigation. your answer to the nearest whole number.
    3. Find the number of weeks that it will take the population to reach 400 . Give your answer in the form \(t = r \ln s\), where \(r\) and \(s\) are integers.
    1. Show that the rate of growth, \(\frac { \mathrm { d } N } { \mathrm {~d} t }\), is given by $$\frac { \mathrm { d } N } { \mathrm {~d} t } = \frac { N } { 4000 } ( 500 - N )$$
    2. The maximum rate of growth occurs after \(T\) weeks. Find the value of \(T\).