AQA C4 2013 January — Question 3

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2013
SessionJanuary
TopicHarmonic Form

3
    1. Express \(3 \cos x + 2 \sin x\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving your value of \(\alpha\) to the nearest \(0.1 ^ { \circ }\).
      (3 marks)
    2. Hence find the minimum value of \(3 \cos x + 2 \sin x\) and the value of \(x\) in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\) where the minimum occurs. Give your value of \(x\) to the nearest \(0.1 ^ { \circ }\).
    1. Show that \(\cot x - \sin 2 x = \cot x \cos 2 x\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
    2. Hence, or otherwise, solve the equation $$\cot x - \sin 2 x = 0$$ in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).