Edexcel C2 (Core Mathematics 2)

Question 1
View details
1. $$f ( x ) = p x ^ { 3 } + 6 x ^ { 2 } + 12 x + q .$$ Given that the remainder when \(\mathrm { f } ( x )\) is divided by ( \(x - 1\) ) is equal to the remainder when \(\mathrm { f } ( x )\) is divided by ( \(2 x + 1\) ),
  1. find the value of \(p\). Given also that \(q = 3\), and \(p\) has the value found in part (a),
  2. find the value of the remainder.
Question 2
View details
2. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{f01026a9-e5fe-4c19-b096-2bb4ad22c389-2_615_833_941_598}
\end{figure} The circle \(C\), with centre \(( a , b )\) and radius 5 , touches the \(x\)-axis at \(( 4,0 )\), as shown in Fig. 1.
  1. Write down the value of \(a\) and the value of \(b\).
  2. Find a cartesian equation of \(C\). A tangent to the circle, drawn from the point \(P ( 8,17 )\), touches the circle at \(T\).
  3. Find, to 3 significant figures, the length of \(P T\).
Question 4
View details
4
4
\end{tabular} &
\hline \begin{tabular}{l}
Question 5
View details
5
5
\end{tabular} &
\hline \begin{tabular}{l}
Question 6
View details
6
6
\end{tabular} &
\hline \begin{tabular}{l}
Question 7
View details
7
7
\end{tabular} &
\hline &
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline & \multirow{2}{*}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline &
\hline &
\hline &
\hline &
\hline &
\hline &
\hline Total &
\hline \end{tabular} \end{center} 1. $$f ( x ) = p x ^ { 3 } + 6 x ^ { 2 } + 12 x + q .$$ Given that the remainder when \(\mathrm { f } ( x )\) is divided by ( \(x - 1\) ) is equal to the remainder when \(\mathrm { f } ( x )\) is divided by ( \(2 x + 1\) ),
  1. find the value of \(p\). Given also that \(q = 3\), and \(p\) has the value found in part (a),
  2. find the value of the remainder.
    2. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{f01026a9-e5fe-4c19-b096-2bb4ad22c389-2_615_833_941_598}
    \end{figure} The circle \(C\), with centre \(( a , b )\) and radius 5 , touches the \(x\)-axis at \(( 4,0 )\), as shown in Fig. 1.
  3. Write down the value of \(a\) and the value of \(b\).
  4. Find a cartesian equation of \(C\). A tangent to the circle, drawn from the point \(P ( 8,17 )\), touches the circle at \(T\).
  5. Find, to 3 significant figures, the length of \(P T\).
    3. (a) Expand \(( 2 \sqrt { } x + 3 ) ^ { 2 }\).
  6. Hence evaluate \(\int _ { 1 } ^ { 2 } ( 2 \sqrt { } x + 3 ) ^ { 2 } \mathrm {~d} x\), giving your answer in the form \(a + b \sqrt { } 2\), where \(a\) and \(b\) are integers.
    4. The first three terms in the expansion, in ascending powers of \(x\), of \(( 1 + p x ) ^ { n }\), are \(1 - 18 x + 36 p ^ { 2 } x ^ { 2 }\). Given that \(n\) is a positive integer, find the value of \(n\) and the value of \(p\).
    (7 marks)
    5. Find all values of \(\theta\) in the interval \(0 \leq \theta < 360\) for which
  7. \(\cos ( \theta + 75 ) ^ { \circ } = 0\).
  8. \(\sin 2 \theta ^ { \circ } = 0.7\), giving your answers to one decima1 place.
    6. Given that \(\log _ { 2 } x = a\), find, in terms of \(a\), the simplest form of
  9. \(\log _ { 2 } ( 16 x )\),
  10. \(\log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right)\).
  11. Hence, or otherwise, solve $$\log _ { 2 } ( 16 x ) - \log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right) = \frac { 1 } { 2 }$$ giving your answer in its simplest surd form.
    7. The curve \(C\) has equation \(y = \cos \left( x + \frac { \pi } { 4 } \right) , 0 \leq x \leq 2 \pi\).
  12. Sketch \(C\).
  13. Write down the exact coordinates of the points at which \(C\) meets the coordinate axes.
  14. Solve, for \(x\) in the interval \(0 \leq x \leq 2 \pi\), $$\cos \left( x + \frac { \pi } { 4 } \right) = 0.5$$ giving your answers in terms of \(\pi\).
Question 8
View details
8. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{f01026a9-e5fe-4c19-b096-2bb4ad22c389-4_769_1150_269_379}
\end{figure} Figure 2 shows part of the curve with equation $$y = x ^ { 3 } - 6 x ^ { 2 } + 9 x .$$ The curve touches the \(x\)-axis at \(A\) and has a maximum turning point at \(B\).
  1. Show that the equation of the curve may be written as $$y = x ( x - 3 ) ^ { 2 } ,$$ and hence write down the coordinates of \(A\).
  2. Find the coordinates of \(B\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  3. Find the area of \(R\).
Question 9
View details
9 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f01026a9-e5fe-4c19-b096-2bb4ad22c389-5_686_1240_178_312} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Triangle \(A B C\) has \(A B = 9 \mathrm {~cm} , B C 10 \mathrm {~cm}\) and \(C A = 5 \mathrm {~cm}\). A circle, centre \(A\) and radius 3 cm , intersects \(A B\) and \(A C\) at \(P\) and \(Q\) respectively, as shown in Fig. 3.
  1. Show that, to 3 decimal places, \(\angle B A C = 1.504\) radians. Calculate,
  2. the area, in \(\mathrm { cm } ^ { 2 }\), of the sector \(A P Q\),
  3. the area, in \(\mathrm { cm } ^ { 2 }\), of the shaded region \(B P Q C\),
  4. the perimeter, in cm , of the shaded region \(B P Q C\).