AQA C2 2012 June — Question 6

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2012
SessionJune
TopicDifferentiation Applications
TypeDetermine nature of stationary points

6 At the point \(( x , y )\), where \(x > 0\), the gradient of a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 } - \frac { 4 } { x ^ { 2 } } - 11$$ The point \(P ( 2,1 )\) lies on the curve.
    1. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 2\).
      (l mark)
    2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 2\).
    3. Hence state whether \(P\) is a maximum point or a minimum point, giving a reason for your answer.
  1. Find the equation of the curve.