AQA C2 2009 June — Question 8

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2009
SessionJune
TopicReciprocal Trig & Identities

8
  1. Given that \(\frac { \sin \theta - \cos \theta } { \cos \theta } = 4\), prove that \(\tan \theta = 5\).
    1. Use an appropriate identity to show that the equation $$2 \cos ^ { 2 } x - \sin x = 1$$ can be written as $$2 \sin ^ { 2 } x + \sin x - 1 = 0$$
    2. Hence solve the equation $$2 \cos ^ { 2 } x - \sin x = 1$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
      PARTREFERENCE
      \(\_\_\_\_\)
      \(\_\_\_\_\)
      \includegraphics[max width=\textwidth, alt={}]{22f2da99-0878-48a6-a2b7-1ba339d3c7e4-09_33_1698_2682_155}