A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure and Mechanics
Differentiation Applications
Q6
Edexcel C1 — Question 6
Exam Board
Edexcel
Module
C1 (Core Mathematics 1)
Topic
Differentiation Applications
Type
Find normal line equation
The curve with equation \(y = x ^ { 2 } + 2 x\) passes through the origin, \(O\).
Find an equation for the normal to the curve at \(O\).
Find the coordinates of the point where the normal to the curve at \(O\) intersects the curve again.
Given that
$$y = \sqrt { x } - \frac { 4 } { \sqrt { x } }$$
find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} ^ { 2 } }\),
show that $$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y = 0$$
This paper
(8 questions)
View full paper
Q1
Q2
Q4
Q5
Q6
Q8
Q9
Q10