- (a) Express \(x ^ { 2 } + 6 x + 7\) in the form \(( x + a ) ^ { 2 } + b\).
(b) State the coordinates of the minimum point of the curve \(y = x ^ { 2 } + 6 x + 7\). - The straight line \(l _ { 1 }\) has the equation \(3 x - y = 0\).
The straight line \(l _ { 2 }\) has the equation \(x + 2 y - 4 = 0\).
(a) Sketch \(l _ { 1 }\) and \(l _ { 2 }\) on the same diagram, showing the coordinates of any points where each line meets the coordinate axes.
(b) Find, as exact fractions, the coordinates of the point where \(l _ { 1 }\) and \(l _ { 2 }\) intersect.