AQA C1 2013 June — Question 6

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2013
SessionJune
TopicDifferentiation Applications
TypeFind tangent line equation

6 A curve has equation \(y = x ^ { 5 } - 2 x ^ { 2 } + 9\). The point \(P\) with coordinates \(( - 1,6 )\) lies on the curve.
  1. Find the equation of the tangent to the curve at the point \(P\), giving your answer in the form \(y = m x + c\).
  2. The point \(Q\) with coordinates \(( 2 , k )\) lies on the curve.
    1. Find the value of \(k\).
    2. Verify that \(Q\) also lies on the tangent to the curve at the point \(P\).
  3. The curve and the tangent to the curve at \(P\) are sketched below.
    \includegraphics[max width=\textwidth, alt={}, center]{aa42b4fd-1e37-48b8-90ee-269916c4db2c-4_721_887_936_589}
    1. Find \(\int _ { - 1 } ^ { 2 } \left( x ^ { 5 } - 2 x ^ { 2 } + 9 \right) \mathrm { d } x\).
    2. Hence find the area of the shaded region bounded by the curve and the tangent to the curve at \(P\).
      (3 marks)