AQA C1 2013 June — Question 4

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2013
SessionJune
TopicFactor & Remainder Theorem
TypeVerify factor then solve related equation

4
  1. The polynomial \(\mathrm { f } ( x )\) is given by \(\mathrm { f } ( x ) = x ^ { 3 } - 4 x + 15\).
    1. Use the Factor Theorem to show that \(x + 3\) is a factor of \(\mathrm { f } ( x )\).
    2. Express \(\mathrm { f } ( x )\) in the form \(( x + 3 ) \left( x ^ { 2 } + p x + q \right)\), where \(p\) and \(q\) are integers.
  2. A curve has equation \(y = x ^ { 4 } - 8 x ^ { 2 } + 60 x + 7\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Show that the \(x\)-coordinates of any stationary points of the curve satisfy the equation $$x ^ { 3 } - 4 x + 15 = 0$$
    3. Use the results above to show that the only stationary point of the curve occurs when \(x = - 3\).
    4. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = - 3\).
    5. Hence determine, with a reason, whether the curve has a maximum point or a minimum point when \(x = - 3\).