AQA C1 2011 June — Question 3

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2011
SessionJune
TopicDifferentiation Applications
TypeRelated rates problems

3 The volume, \(V \mathrm {~m} ^ { 3 }\), of water in a tank after time \(t\) seconds is given by $$V = \frac { t ^ { 3 } } { 4 } - 3 t + 5$$
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} t }\).
    1. Find the rate of change of volume, in \(\mathrm { m } ^ { 3 } \mathrm {~s} ^ { - 1 }\), when \(t = 1\).
    2. Hence determine, with a reason, whether the volume is increasing or decreasing when \(t = 1\).
    1. Find the positive value of \(t\) for which \(V\) has a stationary value.
    2. Find \(\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} t ^ { 2 } }\), and hence determine whether this stationary value is a maximum value or a minimum value.
      (3 marks)