AQA C1 2006 June — Question 7

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2006
SessionJune
TopicCircles

7 A circle has equation \(x ^ { 2 } + y ^ { 2 } - 4 x - 14 = 0\).
  1. Find:
    1. the coordinates of the centre of the circle;
    2. the radius of the circle in the form \(p \sqrt { 2 }\), where \(p\) is an integer.
  2. A chord of the circle has length 8. Find the perpendicular distance from the centre of the circle to this chord.
  3. A line has equation \(y = 2 k - x\), where \(k\) is a constant.
    1. Show that the \(x\)-coordinate of any point of intersection of the line and the circle satisfies the equation $$x ^ { 2 } - 2 ( k + 1 ) x + 2 k ^ { 2 } - 7 = 0$$
    2. Find the values of \(k\) for which the equation $$x ^ { 2 } - 2 ( k + 1 ) x + 2 k ^ { 2 } - 7 = 0$$ has equal roots.
    3. Describe the geometrical relationship between the line and the circle when \(k\) takes either of the values found in part (c)(ii).