AQA C1 2006 June — Question 5

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2006
SessionJune
TopicDifferentiation Applications
TypeFind stationary points

5 The curve with equation \(y = x ^ { 3 } - 10 x ^ { 2 } + 28 x\) is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{f2c95d73-d3fe-48f7-af07-84f12bb06727-3_483_899_402_568} The curve crosses the \(x\)-axis at the origin \(O\) and the point \(A ( 3,21 )\) lies on the curve.
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence show that the curve has a stationary point when \(x = 2\) and find the \(x\)-coordinate of the other stationary point.
    1. Find \(\int \left( x ^ { 3 } - 10 x ^ { 2 } + 28 x \right) \mathrm { d } x\).
    2. Hence show that \(\int _ { 0 } ^ { 3 } \left( x ^ { 3 } - 10 x ^ { 2 } + 28 x \right) \mathrm { d } x = 56 \frac { 1 } { 4 }\).
    3. Hence determine the area of the shaded region bounded by the curve and the line \(O A\).