By differentiating \(\frac { \sin x } { \cos x }\), show that if \(y = \tan x\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec ^ { 2 } x\).
Using the results of parts (ii) and (iii), show that
$$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { ( \cos \theta + \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = 1$$