CAIE P2 2004 November — Question 8

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2004
SessionNovember
TopicHarmonic Form

8
  1. Express \(\cos \theta + \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving the exact values of \(R\) and \(\alpha\).
  2. Hence show that $$\frac { 1 } { ( \cos \theta + \sin \theta ) ^ { 2 } } = \frac { 1 } { 2 } \sec ^ { 2 } \left( \theta - \frac { 1 } { 4 } \pi \right)$$
  3. By differentiating \(\frac { \sin x } { \cos x }\), show that if \(y = \tan x\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec ^ { 2 } x\).
  4. Using the results of parts (ii) and (iii), show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { ( \cos \theta + \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = 1$$