AQA C1 2011 January — Question 5

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2011
SessionJanuary
TopicFactor & Remainder Theorem
TypeDirect remainder then factorise

5
    1. Sketch the curve with equation \(y = x ( x - 2 ) ^ { 2 }\).
    2. Show that the equation \(x ( x - 2 ) ^ { 2 } = 3\) can be expressed as $$x ^ { 3 } - 4 x ^ { 2 } + 4 x - 3 = 0$$
  1. The polynomial \(\mathrm { p } ( x )\) is given by \(\mathrm { p } ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 4 x - 3\).
    1. Find the remainder when \(\mathrm { p } ( x )\) is divided by \(x + 1\).
    2. Use the Factor Theorem to show that \(x - 3\) is a factor of \(\mathrm { p } ( x )\).
    3. Express \(\mathrm { p } ( x )\) in the form \(( x - 3 ) \left( x ^ { 2 } + b x + c \right)\), where \(b\) and \(c\) are integers.
  2. Hence show that the equation \(x ( x - 2 ) ^ { 2 } = 3\) has only one real root and state the value of this root.