AQA C1 (Core Mathematics 1) 2011 January

Question 1
View details
1 The curve with equation \(y = 13 + 18 x + 3 x ^ { 2 } - 4 x ^ { 3 }\) passes through the point \(P\) where \(x = - 1\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that the point \(P\) is a stationary point of the curve and find the other value of \(x\) where the curve has a stationary point.
    1. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(P\).
    2. Hence, or otherwise, determine whether \(P\) is a maximum point or a minimum point.
      (l mark)
Question 2
View details
2
  1. Simplify \(( 3 \sqrt { 3 } ) ^ { 2 }\).
  2. Express \(\frac { 4 \sqrt { 3 } + 3 \sqrt { 7 } } { 3 \sqrt { 3 } + \sqrt { 7 } }\) in the form \(\frac { m + \sqrt { 21 } } { n }\), where \(m\) and \(n\) are integers.
Question 3
View details
3 The line \(A B\) has equation \(3 x + 2 y = 7\). The point \(C\) has coordinates \(( 2 , - 7 )\).
    1. Find the gradient of \(A B\).
    2. The line which passes through \(C\) and which is parallel to \(A B\) crosses the \(y\)-axis at the point \(D\). Find the \(y\)-coordinate of \(D\).
  1. The line with equation \(y = 1 - 4 x\) intersects the line \(A B\) at the point \(A\). Find the coordinates of \(A\).
  2. The point \(E\) has coordinates \(( 5 , k )\). Given that \(C E\) has length 5 , find the two possible values of the constant \(k\).
Question 4
View details
4 The curve sketched below passes through the point \(A ( - 2,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{889639d6-0a31-4569-8370-1e72291a0c47-3_538_734_365_662} The curve has equation \(y = 14 - x - x ^ { 4 }\) and the point \(P ( 1,12 )\) lies on the curve.
    1. Find the gradient of the curve at the point \(P\).
    2. Hence find the equation of the tangent to the curve at the point \(P\), giving your answer in the form \(y = m x + c\).
    1. Find \(\int _ { - 2 } ^ { 1 } \left( 14 - x - x ^ { 4 } \right) \mathrm { d } x\).
    2. Hence find the area of the shaded region bounded by the curve \(y = 14 - x - x ^ { 4 }\) and the line \(A P\).
      (2 marks)
Question 5
View details
5
    1. Sketch the curve with equation \(y = x ( x - 2 ) ^ { 2 }\).
    2. Show that the equation \(x ( x - 2 ) ^ { 2 } = 3\) can be expressed as $$x ^ { 3 } - 4 x ^ { 2 } + 4 x - 3 = 0$$
  1. The polynomial \(\mathrm { p } ( x )\) is given by \(\mathrm { p } ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 4 x - 3\).
    1. Find the remainder when \(\mathrm { p } ( x )\) is divided by \(x + 1\).
    2. Use the Factor Theorem to show that \(x - 3\) is a factor of \(\mathrm { p } ( x )\).
    3. Express \(\mathrm { p } ( x )\) in the form \(( x - 3 ) \left( x ^ { 2 } + b x + c \right)\), where \(b\) and \(c\) are integers.
  2. Hence show that the equation \(x ( x - 2 ) ^ { 2 } = 3\) has only one real root and state the value of this root.
Question 6
View details
6 A circle has centre \(C ( - 3,1 )\) and radius \(\sqrt { 13 }\).
    1. Express the equation of the circle in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = k$$
    2. Hence find the equation of the circle in the form $$x ^ { 2 } + y ^ { 2 } + m x + n y + p = 0$$ where \(m , n\) and \(p\) are integers.
  1. The circle cuts the \(y\)-axis at the points \(A\) and \(B\). Find the distance \(A B\).
    1. Verify that the point \(D ( - 5 , - 2 )\) lies on the circle.
    2. Find the gradient of \(C D\).
    3. Hence find an equation of the tangent to the circle at the point \(D\).
Question 7
View details
7
    1. Express \(4 - 10 x - x ^ { 2 }\) in the form \(p - ( x + q ) ^ { 2 }\).
    2. Hence write down the equation of the line of symmetry of the curve with equation \(y = 4 - 10 x - x ^ { 2 }\).
  1. The curve \(C\) has equation \(y = 4 - 10 x - x ^ { 2 }\) and the line \(L\) has equation \(y = k ( 4 x - 13 )\), where \(k\) is a constant.
    1. Show that the \(x\)-coordinates of any points of intersection of the curve \(C\) with the line \(L\) satisfy the equation $$x ^ { 2 } + 2 ( 2 k + 5 ) x - ( 13 k + 4 ) = 0$$
    2. Given that the curve \(C\) and the line \(L\) intersect in two distinct points, show that $$4 k ^ { 2 } + 33 k + 29 > 0$$
    3. Solve the inequality \(4 k ^ { 2 } + 33 k + 29 > 0\).