AQA C1 2010 January — Question 3

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2010
SessionJanuary
TopicDifferentiation Applications
TypeDetermine nature of stationary points

3 The depth of water, \(y\) metres, in a tank after time \(t\) hours is given by $$y = \frac { 1 } { 8 } t ^ { 4 } - 2 t ^ { 2 } + 4 t , \quad 0 \leqslant t \leqslant 4$$
  1. Find:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} t }\);
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
  2. Verify that \(y\) has a stationary value when \(t = 2\) and determine whether it is a maximum value or a minimum value.
    1. Find the rate of change of the depth of water, in metres per hour, when \(t = 1\).
    2. Hence determine, with a reason, whether the depth of water is increasing or decreasing when \(t = 1\).