Edexcel D1 2021 October — Question 3

Exam BoardEdexcel
ModuleD1 (Decision Mathematics 1)
Year2021
SessionOctober
TopicTravelling Salesman

3. The table below represents a complete network that shows the least costs of travelling between eight cities, A, B, C, D, E, F, G and H.
ABCDEFGH
A-36384023393835
B36-353635344138
C3835-3925324040
D403639-37372633
E23352537-422443
F3934323742-4538
G384140262445-40
H35384033433840-
Srinjoy must visit each city at least once. He will start and finish at A and wishes to minimise his total cost.
  1. Use Prim's algorithm, starting at A , to find a minimum spanning tree for this network. You must list the arcs that form the tree in the order in which you select them.
  2. State the weight of the minimum spanning tree.
  3. Use your answer to (b) to help you calculate an initial upper bound for the total cost of Srinjoy’s route.
  4. Show that there are two nearest neighbour routes that start from A. You must make the routes and their corresponding costs clear.
  5. State the best upper bound that can be obtained by using your answers to (c) and (d).
  6. Starting by deleting A and all of its arcs, find a lower bound for the total cost of Srinjoy’s route. You must make your method and working clear.
  7. Use your results to write down the smallest interval that must contain the optimal cost of Srinjoy's route.