CAIE P1 2022 November — Question 9

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2022
SessionNovember
TopicComposite & Inverse Functions

9 Functions f and g are defined by $$\begin{aligned} & \mathrm { f } ( x ) = x + \frac { 1 } { x } \quad \text { for } x > 0
& \mathrm {~g} ( x ) = a x + 1 \quad \text { for } x \in \mathbb { R } \end{aligned}$$ where \(a\) is a constant.
  1. Find an expression for \(\operatorname { gf } ( x )\).
  2. Given that \(\operatorname { gf } ( 2 ) = 11\), find the value of \(a\).
  3. Given that the graph of \(y = \mathrm { f } ( x )\) has a minimum point when \(x = 1\), explain whether or not f has an inverse.
    It is given instead that \(a = 5\).
  4. Find and simplify an expression for \(\mathrm { g } ^ { - 1 } \mathrm { f } ( x )\).
  5. Explain why the composite function fg cannot be formed.
    \includegraphics[max width=\textwidth, alt={}, center]{5d26c357-ea9f-47d9-8eca-2152901cf2f1-16_1143_1008_267_566} The diagram shows a cross-section RASB of the body of an aircraft. The cross-section consists of a sector \(O A R B\) of a circle of radius 2.5 m , with centre \(O\), a sector \(P A S B\) of another circle of radius 2.24 m with centre \(P\) and a quadrilateral \(O A P B\). Angle \(A O B = \frac { 2 } { 3 } \pi\) and angle \(A P B = \frac { 5 } { 6 } \pi\).