Edexcel S3 2008 June — Question 6

Exam BoardEdexcel
ModuleS3 (Statistics 3)
Year2008
SessionJune
TopicChi-squared distribution

  1. Ten cuttings were taken from each of 100 randomly selected garden plants. The numbers of cuttings that did not grow were recorded.
The results are as follows
No. of cuttings
which did
not grow
012345678,9 or 10
Frequency11213020123210
  1. Show that the probability of a randomly selected cutting, from this sample, not growing is 0.223 A gardener believes that a binomial distribution might provide a good model for the number of cuttings, out of 10 , that do not grow. He uses a binomial distribution, with the probability 0.2 of a cutting not growing. The calculated expected frequencies are as follows
    No. of cuttings which did
    not grow
    012345 or more
    Expected frequency\(r\)26.84\(s\)20.138.81\(t\)
  2. Find the values of \(r , s\) and \(t\).
  3. State clearly the hypotheses required to test whether or not this binomial distribution is a suitable model for these data. The test statistic for the test is 4.17 and the number of degrees of freedom used is 4 .
  4. Explain fully why there are 4 degrees of freedom.
  5. Stating clearly the critical value used, carry out the test using a \(5 \%\) level of significance.