Edexcel S3 2017 June — Question 4

Exam BoardEdexcel
ModuleS3 (Statistics 3)
Year2017
SessionJune
TopicHypothesis test of a Poisson distribution

4. The number of emergency plumbing calls received per day by a local council was recorded over a period of 80 days. The results are summarised in the table below.
Number of calls, \(\boldsymbol { x }\)012345678
Frequency3131415108863
  1. Show that the mean number of emergency plumbing calls received per day is 3.5 A council officer suggests that a Poisson distribution can be used to model the number of emergency plumbing calls received per day. He uses the mean from the sample above and calculates the expected frequencies shown in the table below.
    \(\boldsymbol { x }\)01234567
    8 or
    more
    Expected
    frequency
    2.428.4614.80\(r\)15.1010.576.173.08\(s\)
  2. Calculate the value of \(r\) and the value of \(s\), giving your answers correct to 2 decimal places.
  3. Test, at the \(5 \%\) level of significance, whether or not the Poisson distribution is a suitable model for the number of emergency plumbing calls received per day. State your hypotheses clearly.