Edexcel S3 2014 June — Question 7

Exam BoardEdexcel
ModuleS3 (Statistics 3)
Year2014
SessionJune
TopicLinear combinations of normal random variables
TypeDistribution of linear combination

7. The random variable \(X\) is defined as $$X = 4 Y - 3 W$$ where \(Y \sim \mathrm {~N} \left( 40,3 ^ { 2 } \right) , W \sim \mathrm {~N} \left( 50,2 ^ { 2 } \right)\) and \(Y\) and \(W\) are independent.
  1. Find \(\mathrm { P } ( X > 25 )\) The random variables \(Y _ { 1 } , Y _ { 2 }\) and \(Y _ { 3 }\) are independent and each has the same distribution as \(Y\). The random variable \(A\) is defined as $$A = \sum _ { i = 1 } ^ { 3 } Y _ { i }$$ The random variable \(C\) is such that \(C \sim \mathrm {~N} \left( 115 , \sigma ^ { 2 } \right)\) Given that \(\mathrm { P } ( A - C < 0 ) = 0.2\) and that \(A\) and \(C\) are independent,
  2. find the variance of \(C\).