Edexcel S3 2014 June — Question 2

Exam BoardEdexcel
ModuleS3 (Statistics 3)
Year2014
SessionJune
TopicContinuous Uniform Random Variables
TypeSample statistics from uniform

2. The random variable \(X\) follows a continuous uniform distribution over the interval \([ \alpha - 3,2 \alpha + 3 ]\) where \(\alpha\) is a constant.
The mean of a random sample of size \(n\) is denoted by \(\bar { X }\)
  1. Show that \(\bar { X }\) is a biased estimator of \(\alpha\), and state the bias. Given that \(Y = k \bar { X }\) is an unbiased estimator for \(\alpha\)
  2. find the value of \(k\). A random sample of 10 values of \(X\) is taken and the results are as follows $$\begin{array} { l l l l l l l l l l } 3 & 5 & 8 & 12 & 4 & 13 & 10 & 8 & 5 & 12 \end{array}$$
  3. Hence estimate the maximum value of \(X\)