Edexcel S2 2002 January — Question 4

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2002
SessionJanuary
TopicContinuous Uniform Random Variables
TypeWaiting time applications

4. Jean catches a bus to work every morning. According to the timetable the bus is due at 8 a.m., but Jean knows that the bus can arrive at a random time between five minutes early and 9 minutes late. The random variable \(X\) represents the time, in minutes, after 7.55 a.m. when the bus arrives.
  1. Suggest a suitable model for the distribution of \(X\) and specify it fully.
  2. Calculate the mean time of arrival of the bus.
  3. Find the cumulative distribution function of \(X\). Jean will be late for work if the bus arrives after 8.05 a.m.
  4. Find the probability that Jean is late for work.