7. A continuous random variable \(X\) has cumulative distribution function \(\mathrm { F } ( x )\) given by
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r }
0 , & x < 0
k x ^ { 2 } + 2 k x , & 0 \leq x \leq 2
8 k , & x > 2
\end{array} \right.$$
- Show that \(k = \frac { 1 } { 8 }\).
- Find the median of \(X\).
- Find the probability density function \(\mathrm { f } ( x )\).
- Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
- Write down the mode of \(X\).
- Find \(\mathrm { E } ( X )\).
- Comment on the skewness of this distribution.