2. A continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c }
0 & x < 1
\frac { 1 } { 5 } ( x - 1 ) & 1 \leqslant x \leqslant 6
1 & x > 6
\end{array} \right.$$
- Find \(\mathrm { P } ( X > 4 )\)
- Write down the value of \(\mathrm { P } ( X \neq 4 )\)
- Find the probability density function of \(X\), specifying it for all values of \(x\)
- Write down the value of \(\mathrm { E } ( X )\)
- Find \(\operatorname { Var } ( X )\)
- Hence or otherwise find \(\mathrm { E } \left( 3 X ^ { 2 } + 1 \right)\)