Edexcel S2 (Statistics 2) 2018 Specimen

Question 1
View details
  1. The number of cars caught speeding per day, by a particular camera, has a Poisson distribution with mean 0.8
    1. Find the probability that in a given 4 day period exactly 3 cars will be caught speeding by this camera.
    A car has been caught speeding by this camera.
  2. Find the probability that the period of time that elapses before the next car is caught speeding by this camera is less than 48 hours. Given that 4 cars were caught speeding by this camera in a two day period,
  3. find the probability that 1 was caught on the first day and 3 were caught on the second day. Each car that is caught speeding by this camera is fined £60
  4. Using a suitable approximation, find the probability that, in 90 days, the total amount of fines issued will be more than \(\pounds 5000\)
Question 2
View details
2. A continuous random variable \(X\) has cumulative distribution function $$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < 1
\frac { 1 } { 5 } ( x - 1 ) & 1 \leqslant x \leqslant 6
1 & x > 6 \end{array} \right.$$
  1. Find \(\mathrm { P } ( X > 4 )\)
  2. Write down the value of \(\mathrm { P } ( X \neq 4 )\)
  3. Find the probability density function of \(X\), specifying it for all values of \(x\)
  4. Write down the value of \(\mathrm { E } ( X )\)
  5. Find \(\operatorname { Var } ( X )\)
  6. Hence or otherwise find \(\mathrm { E } \left( 3 X ^ { 2 } + 1 \right)\)
Question 3
View details
3. Explain what you understand by
  1. a statistic,
  2. a sampling distribution. A factory stores screws in packets. A small packet contains 100 screws and a large packet contains 200 screws. The factory keeps small and large packets in the ratio 4:3 respectively.
  3. Find the mean and the variance of the number of screws in the packets stored at the factory. A random sample of 3 packets is taken from the factory and \(Y _ { 1 } , Y _ { 2 }\) and \(Y _ { 3 }\) denote the number of screws in each of these packets.
  4. List all the possible samples.
  5. Find the sampling distribution of \(\bar { Y }\)
    VIIIV SIHI NI IIIYM ION OCVIUV SIHI NI JIIIM I I ON OCVEXV SIHII NI JIIIM I ION OO
Question 4
View details
4. Accidents occur randomly at a crossroads at a rate of 0.5 per month. A researcher records the number of accidents, \(X\), which occur at the crossroads in a year.
  1. Find \(\mathrm { P } ( 5 \leqslant X < 7 )\) A new system is introduced at the crossroads. In the first 18 months, 4 accidents occur at the crossroads.
  2. Test, at the \(5 \%\) level of significance, whether or not there is reason to believe that the new system has led to a reduction in the mean number of accidents per month. State your hypotheses clearly.
    VIIIV SIHI NI JIIIM ION OCVIIV SIHI NI JAHM ION OOVI4V SIHI NI JIIIM I ON OO
    \includegraphics[max width=\textwidth, alt={}]{adad0b25-9b43-4531-99d5-fd61362df9b5-15_2255_50_316_36}
Question 5
View details
5. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by $$f ( x ) = \left\{ \begin{array} { c c } k \left( x ^ { 2 } + a \right) & - 1 < x \leqslant 2
3 k & 2 < x \leqslant 3
0 & \text { otherwise } \end{array} \right.$$ where \(k\) and \(a\) are constants.
Given that \(\mathrm { E } ( X ) = \frac { 17 } { 12 }\)
  1. find the value of \(k\) and the value of \(a\)
  2. Write down the mode of \(X\)
    VIIIV SIHI NI IIIYM ION OCVIIV SIHI NI JIIIM I ION OCVI4V SIHI NI JIIYM IONOO
Question 6
View details
6. The Headteacher of a school claims that \(30 \%\) of parents do not support a new curriculum. In a survey of 20 randomly selected parents, the number, \(X\), who do not support the new curriculum is recorded. Assuming that the Headteacher's claim is correct, find
  1. the probability that \(X = 5\)
  2. the mean and the standard deviation of \(X\) The Director of Studies believes that the proportion of parents who do not support the new curriculum is greater than \(30 \%\). Given that in the survey of 20 parents 8 do not support the new curriculum,
  3. test, at the \(5 \%\) level of significance, the Director of Studies' belief. State your hypotheses clearly. The teachers believe that the sample in the original survey was biased and claim that only \(25 \%\) of the parents are in support of the new curriculum. A second random sample, of size \(2 n\), is taken and exactly half of this sample supports the new curriculum. A test is carried out at a \(10 \%\) level of significance of the teachers' belief using this sample of size \(2 n\) Using the hypotheses \(\mathrm { H } _ { 0 } : p = 0.25\) and \(\mathrm { H } _ { 1 } : p > 0.25\)
  4. find the minimum value of \(n\) for which the outcome of the test is that the teachers' belief is rejected.
Question 7
View details
  1. A multiple choice examination paper has \(n\) questions where \(n > 30\)
Each question has 5 answers of which only 1 is correct. A pass on the paper is obtained by answering 30 or more questions correctly. The probability of obtaining a pass by randomly guessing the answer to each question should not exceed 0.0228 Use a normal approximation to work out the greatest number of questions that could be used.
7.
\includegraphics[max width=\textwidth, alt={}]{adad0b25-9b43-4531-99d5-fd61362df9b5-28_2655_1830_105_121}
VIIIV SIHI NI J14M 10N OCVIIN SIHI NI III HM ION OOVERV SIHI NI JIIIM ION OO