- The continuous random variable \(Y\) has cumulative distribution function given by
$$\mathrm { F } ( y ) = \left\{ \begin{array} { l r }
0 & y < 0
\frac { 1 } { 21 } y ^ { 2 } & 0 \leqslant y \leqslant k
\frac { 2 } { 15 } \left( 6 y - \frac { y ^ { 2 } } { 2 } \right) - \frac { 7 } { 5 } & k < y \leqslant 6
1 & y > 6
\end{array} \right.$$
- Find \(\mathrm { P } \left( \left. Y < \frac { 1 } { 4 } k \right\rvert \, Y < k \right)\)
- Find the value of \(k\)
- Use algebraic calculus to find \(\mathrm { E } ( Y )\)