6. The continuous random variable \(Y\) has probability density function \(\mathrm { f } ( y )\) given by
$$f ( y ) = \begin{cases} \frac { 1 } { 14 } ( y + 2 ) & - 1 < y \leqslant 1
\frac { 3 } { 14 } & 1 < y \leqslant 3
\frac { 1 } { 14 } ( 6 - y ) & 3 < y \leqslant 5
0 & \text { otherwise } \end{cases}$$
- Sketch the probability density function \(\mathrm { f } ( \mathrm { y } )\)
Given that \(\mathrm { E } \left( Y ^ { 2 } \right) = \frac { 131 } { 21 }\)
- find \(\operatorname { Var } ( 2 Y - 3 )\)
The cumulative distribution function of \(Y\) is \(\mathrm { F } ( y )\)
- Show that \(\mathrm { F } ( y ) = \frac { 1 } { 14 } \left( \frac { y ^ { 2 } } { 2 } + 2 y + \frac { 3 } { 2 } \right)\) for \(- 1 < y \leqslant 1\)
- Find \(\mathrm { F } ( y )\) for all values of \(y\)
- Find the exact value of the 30th percentile of \(Y\)
- Find \(\mathrm { P } ( 4 Y \leqslant 5 \mid Y \leqslant 3 )\)