3. A continuous random variable \(X\) has cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r }
0 & x < 0
4 a x ^ { 2 } & 0 \leqslant x \leqslant 1
a \left( b x ^ { 3 } - x ^ { 4 } + 1 \right) & 1 < x \leqslant 3
1 & x > 3
\end{array} \right.$$
where \(a\) and \(b\) are positive constants.
- Show that \(b = 4\)
- Find the exact value of \(a\)
- Find \(\mathrm { P } ( X > 2.25 )\)
- Showing your working clearly,
- sketch the probability density function of \(X\)
- calculate the mode of \(X\)