Edexcel S1 2013 June — Question 3

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2013
SessionJune
TopicData representation
TypeEstimate mean and standard deviation from frequency table

3. An agriculturalist is studying the yields, \(y \mathrm {~kg}\), from tomato plants. The data from a random sample of 70 tomato plants are summarised below.
Yield ( \(y \mathrm {~kg}\) )Frequency (f)Yield midpoint ( \(x \mathrm {~kg}\) )
\(0 \leqslant y < 5\)162.5
\(5 \leqslant y < 10\)247.5
\(10 \leqslant y < 15\)1412.5
\(15 \leqslant y < 25\)1220
\(25 \leqslant y < 35\)430
$$\text { (You may use } \sum \mathrm { f } x = 755 \text { and } \sum \mathrm { f } x ^ { 2 } = 12037.5 \text { ) }$$ A histogram has been drawn to represent these data. The bar representing the yield \(5 \leqslant y < 10\) has a width of 1.5 cm and a height of 8 cm .
  1. Calculate the width and the height of the bar representing the yield \(15 \leqslant y < 25\)
  2. Use linear interpolation to estimate the median yield of the tomato plants.
  3. Estimate the mean and the standard deviation of the yields of the tomato plants.
  4. Describe, giving a reason, the skewness of the data.
  5. Estimate the number of tomato plants in the sample that have a yield of more than 1 standard deviation above the mean.