Edexcel S1 2018 October — Question 4

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2018
SessionOctober
TopicPrinciple of Inclusion/Exclusion
TypeThree-Set Venn Diagram Probability Calculation

4. Pieces of wood cladding are produced by a timber merchant. There are three types of fault, \(A , B\) and \(C\), that can appear in each piece of wood cladding. The Venn diagram shows the probabilities of a piece of wood cladding having the various types of fault.
\includegraphics[max width=\textwidth, alt={}, center]{0377c6e9-ab4f-477d-9236-0732fe81f25e-14_602_1120_497_413} A piece of wood cladding is chosen at random.
  1. Find the probability that the piece of wood cladding has more than one type of fault. Fault types \(A\) and \(C\) occur independently.
  2. Find the probability that the piece of wood cladding has no faults. Given that the piece of wood cladding has fault \(A\),
  3. find the probability that it also has fault \(B\) but not fault \(C\). Two pieces of the wood cladding are selected at random.
  4. Find the probability that both have exactly 2 types of fault.