Edexcel S1 2018 October — Question 3

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2018
SessionOctober
TopicData representation
TypeEstimate mean and standard deviation from frequency table

3. The parking times, \(t\) hours, for cars in a car park are summarised below.
Time (t hours)Frequency (f)Time midpoint (m)
\(0 \leqslant t < 1\)100.5
\(1 \leqslant t < 2\)181.5
\(2 \leqslant t < 4\)153
\(4 \leqslant t < 6\)125
\(6 \leqslant t < 12\)59
$$\text { (You may use } \sum \mathrm { fm } = 182 \text { and } \sum \mathrm { fm } ^ { 2 } = 883 \text { ) }$$ A histogram is drawn to represent these data.
The bar representing the time \(1 \leqslant t < 2\) has a width of 1.5 cm and a height of 6 cm .
  1. Calculate the width and the height of the bar representing the time \(4 \leqslant t < 6\)
  2. Use linear interpolation to estimate the median parking time for the cars in the car park.
  3. Estimate the mean and the standard deviation of the parking time for the cars in the car park.
  4. Describe, giving a reason, the skewness of the data. One of these cars is selected at random.
  5. Estimate the probability that this car is parked for more than 75 minutes.