Edexcel S1 2016 October — Question 6

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2016
SessionOctober
TopicMeasures of Location and Spread
TypeFind median and quartiles from stem-and-leaf diagram

  1. The stem and leaf diagram gives the blood pressure, \(x \mathrm { mmHg }\), for a random sample of 19 female patients.
1012
1127788
12022344557
13129
Key: 10 | 1 means blood pressure of 101 mmHg
  1. Find the median and the quartiles for these data.
  2. Find the interquartile range ( \(Q _ { 3 } - Q _ { 1 }\) ) An outlier is a value that is greater than \(Q _ { 3 } + 1.5 \times \left( Q _ { 3 } - Q _ { 1 } \right)\) or less than \(Q _ { 1 } - 1.5 \times \left( Q _ { 3 } - Q _ { 1 } \right)\)
  3. Showing your working clearly, identify any outliers for these data.
  4. On the grid on page 21 draw a box and whisker plot to represent these data. Show any outliers clearly. The above data can be summarised by $$\sum x = 2299 \text { and } \sum x ^ { 2 } = 279709$$
  5. Calculate the mean and the standard deviation for these data. For a random sample taken from a normal distribution, a rule for determining outliers is: an outlier is more than \(2.7 \times\) standard deviation above or below the mean.
  6. Find the limits to determine outliers using this rule.
  7. State, giving a reason based on some of the above calculations, whether or not a normal distribution is a suitable model for these data. \includegraphics[max width=\textwidth, alt={}, center]{8ff7539e-fa44-4388-af8c-80656f081528-21_2281_73_308_15}
    Turn over for a spare diagram if you need to redraw your plot.
    \includegraphics[max width=\textwidth, alt={}]{8ff7539e-fa44-4388-af8c-80656f081528-24_2639_1830_121_121}