OCR Further Additional Pure 2021 November — Question 2

Exam BoardOCR
ModuleFurther Additional Pure (Further Additional Pure)
Year2021
SessionNovember
TopicGroups

2 The following Cayley table is for \(G\), a group of order 6. The identity element is \(e\) and the group is generated by the elements \(a\) and \(b\).
G\(e\)\(а\)\(a ^ { 2 }\)\(b\)\(a b\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)
\(e\)\(e\)\(а\)\(a ^ { 2 }\)\(b\)\(a b\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)
\(a\)\(а\)\(a ^ { 2 }\)\(e\)\(a b\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(b\)
\(a ^ { 2 }\)\(a ^ { 2 }\)\(e\)\(a\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(b\)\(a b\)
\(b\)b\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(a b\)\(e\)\(a ^ { 2 }\)\(a\)
\(a b\)\(a b\)b\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(a\)\(e\)\(a ^ { 2 }\)
\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(a b\)b\(a ^ { 2 }\)\(a\)\(e\)
  1. List all the proper subgroups of \(G\).
  2. State another group of order 6 to which \(G\) is isomorphic.